What is your answer?
Medieval conceptualism is the doctrine that universals and other abstract entities (like humanity and whiteness) are real entities but are created by the mind.
The corresponding view in contemporary philosophy of mathematics is
{ 1 } - logicism -- which uses bound variables (like "some") to refer to abstract entities (like numbers and sets) known and unknown, indiscriminately.
{ 2 } - formalism -- which denies that abstract entities exist but keeps mathematics as a useful system of symbols that's literally meaningless (and makes no truth claims).
{ 3 } - intuitionism -- which uses bound variables (like "some") to refer only to abstract entities (like numbers and sets) that we have constructed in advance.
<= back | menu | forward =>
Directions: Click on a number from 1 to 3.
1 is wrong. Please try again.
Medieval conceptualism is the doctrine that universals and other abstract entities (like humanity and whiteness) are real entities but are created by the mind.
The corresponding view in contemporary philosophy of mathematics is
{ 1 } - logicism -- which uses bound variables (like "some") to refer to abstract entities (like numbers and sets) known and unknown, indiscriminately.
{ 2 } - formalism -- which denies that abstract entities exist but keeps mathematics as a useful system of symbols that's literally meaningless (and makes no truth claims).
{ 3 } - intuitionism -- which uses bound variables (like "some") to refer only to abstract entities (like numbers and sets) that we have constructed in advance.
This is closer to medieval realism.
<= back | menu | forward =>
2 is wrong. Please try again.
Medieval conceptualism is the doctrine that universals and other abstract entities (like humanity and whiteness) are real entities but are created by the mind.
The corresponding view in contemporary philosophy of mathematics is
{ 1 } - logicism -- which uses bound variables (like "some") to refer to abstract entities (like numbers and sets) known and unknown, indiscriminately.
{ 2 } - formalism -- which denies that abstract entities exist but keeps mathematics as a useful system of symbols that's literally meaningless (and makes no truth claims).
{ 3 } - intuitionism -- which uses bound variables (like "some") to refer only to abstract entities (like numbers and sets) that we have constructed in advance.
This is closer to medieval nominalism.
<= back | menu | forward =>
3 is correct!
Medieval conceptualism is the doctrine that universals and other abstract entities (like humanity and whiteness) are real entities but are created by the mind.
The corresponding view in contemporary philosophy of mathematics is
{ 1 } - logicism -- which uses bound variables (like "some") to refer to abstract entities (like numbers and sets) known and unknown, indiscriminately.
{ 2 } - formalism -- which denies that abstract entities exist but keeps mathematics as a useful system of symbols that's literally meaningless (and makes no truth claims).
{ 3 } - intuitionism -- which uses bound variables (like "some") to refer only to abstract entities (like numbers and sets) that we have constructed in advance.
On this view, numbers and sets are real entities; but they are created by the mind, not discovered.
<= back | menu | forward =>
Before continuing, you might try some wrong answers.
the end